

**UFR des Sciences** 

# Master Sciences et génie des matériaux

### **Présentation**

#### **Parcours**

Physique et ingénierie des nanomatériaux (M1 - M2)

### **Objectifs**

Le parcours PHINAM est destiné à former des étudiants par la recherche pour les laboratoires de recherche publique et privée. Il a pour objectif de former des spécialistes dans les domaines de la modélisation, l'élaboration et la caractérisation physique des matériaux et nanomatériaux fonctionnels. Le but de la formation est d'apporter aux étudiants la maîtrise des outils scientifiques et techniques qui sont à la base des applications technologiques en s'appuyant sur une solide formation fondamentale.

Le parcours est en partenariat avec les universités de Rostov en Russie et Sfax en Tunisie pour un double diplôme qui s'appuie sur la base d'une mobilité au semestre 10 pour les étudiants concernés.

### Compétences

Le parcours PHINAM apporte des connaissances théoriques et expérimentales de haut niveau en physique des matériaux pour la modélisation et la caractérisation permettant de maîtriser l'élaboration et les propriétés des matériaux fonctionnels (nanomatériaux, couches minces et multicouches, matériaux oxydes, matière molle...), des aspects de surface et interfaces, en vue d'applications en nanotechnologies et nanosciences. Ce Master offre aux étudiants une bonne maîtrise de l'élaboration et des processus physiques (processus d'élaboration et processus clefs) et physico-chimiques, de la croissance cristalline et de la caractérisation avancée des matériaux fonctionnels, leurs propriétés intrinsèques, les couplages multiphysiques dont ils peuvent être le siège, leur fonctionnalisation et fonctionnalités pour diverses applications.

### Conditions d'accès

Licence ou équivalent

### Modalités de formation

FORMATION INITIALE

FORMATION CONTINUE

### Informations pratiques

#### Lieux de la formation

**UFR des Sciences** 

### Volume horaire (FC)

580 h en M1 et 300 h en M2

### Capacité d'accueil

25

## Contacts Formation Initiale

Karine Luce

karine.luce@u-picardie.fr

### Plus d'informations

**UFR** des Sciences

Pôle scientifique Saint-Leu, 33 rue Saint-Leu 80039 Amiens Cedex 1 France

https://sciences.u-picardie.fr/

### Autres informations (FI)

Ce parcours est éligible à la bourse E-SENSE.

Obtenir plus d'informations : <a href="https://www.u-picardie.fr/lupjv/notre-ambition-france-">https://www.u-picardie.fr/lupjv/notre-ambition-france-</a>

2030/e-sense-tran...

Postuler à la bourse E-SENSE: https://extra.u-picardie.fr/limesurvey/index.php/229231?lang=fr

### **Organisation**

### Organisation

Le master est ouvert en formation initiale et formation continue.

Le parcours s'organise en 4 semestres, 3 semestres d'UE (S7 à S9) et un semestre (S10) dédié exclusivement à un stage de 5 à 6 mois. La formation correspond à un total de 120 ECTS

La formation est organisée à l'UFR des Sciences de l'Université de Picardie Jules Verne

Le contrôle de connaissances est organisé sous forme d'examens finaux et oraux pour certaines UEs..

### Période de formation

Stages: 2 mois en M1-S2; 4 mois à 6 mois en M2-S4

### Contrôle des connaissances

Contrôle continu et/ou examens terminaux.

Modalités de contrôle des connaissances voir sur la page web de l'UFR.

### Responsable(s) pédagogique(s)

Mimoun El Marssi

mimoun.elmarssi@u-picardie.fr

Igor Loukiantchouk

igor.loukiantchouk@u-picardie.fr

### **Programme**

### **Programmes**

| SEMESTRE 1 SCIENCES ET GENIE DES MATERIAUX | Volume horaire | СМ | TD | TP | ECTS |
|--------------------------------------------|----------------|----|----|----|------|
| Anglais de la Recherche Scientifique       | 30             |    | 30 |    | 3    |
| Initiation au Traitement du Signal         | 25             | 8  |    | 17 | 3    |
| Mathématiques Appliquées à la Physique I   | 25             | 13 | 12 |    | 3    |
| Méthodes Numériaues                        | 25             | 13 | 12 |    | 3    |

|                                                    |    |    |    |    | - |
|----------------------------------------------------|----|----|----|----|---|
| Nanosciences                                       | 30 | 15 | 15 |    | 3 |
| Physique de l'Etat Solide, Propriétés Structurales | 60 | 30 | 30 |    | 6 |
| Physique Expérimentale I                           | 40 |    |    | 40 | 3 |
| Physique Statistique et Thermodynamique            | 50 | 25 | 25 |    | 6 |
| Bonus Optionnel Master 1 Semestre 1                |    |    |    |    |   |

| SEMESTRE 2 SCIENCES ET GENIE DES MATERIAUX                      | Volume horaire | СМ | TD | ТР | ECTS |
|-----------------------------------------------------------------|----------------|----|----|----|------|
| Anglais de la Recherche Scientifique                            | 30             |    | 30 |    | 3    |
| Initiation à la Recherche et Innovation Technologique           | 30             | 15 | 15 |    | 3    |
| Mathématiques Appliquées à la Physique II                       | 25             | 13 | 12 |    | 3    |
| Mécanique et Electrodynamique des Milieux Continus              | 55             | 30 | 25 |    | 6    |
| Nanotechnologies                                                | 25             | 15 | 10 |    | 3    |
| Physique Etat Solide Propriétés Electronique et<br>Fonctionnell | 60             | 30 | 30 |    | 6    |
| Physique Expérimentale II                                       | 40             |    |    | 40 | 3    |
| Stratégie d'Entreprise, Innovation et Gestion de Projets        | 25             | 15 | 10 |    | 3    |
| Bonus Optionnel Master 1 Semestre 2                             |                |    |    |    |      |

| SEMESTRE 3 PHYSIQUE ET INGENIERIE DES<br>NANOMATERIAUX         | Volume horaire | СМ | TD | TP | ECTS |
|----------------------------------------------------------------|----------------|----|----|----|------|
| Elaboration et Caractérisation des Matériaux<br>Nanostructurés | 60             | 25 | 25 | 10 | 6    |
| Méthodes Spectroscopiques des Matériaux                        | 60             | 25 | 25 | 10 | 6    |
| Modélisation et Simulation en Physique des Matériaux           | 30             | 15 |    | 15 | 3    |
| Organisation de la Recherche Scientifique                      | 30             | 15 |    | 15 | 3    |
| Physique des Cristaux Liquides                                 | 30             | 12 | 12 | 6  | 3    |
| Propriétés Physiques des Matériaux Nanostructurés              | 60             | 30 | 30 |    | 6    |
| Sciences des Surfaces, Matériaux 2D et Interfaces              | 30             | 12 | 12 | 6  | 3    |
| Bonus Optionnel Master 2 Semestre 3                            |                |    |    |    |      |

| SEMESTRE 4 PHYSIQUE ET INGENIERIE DES NANOMATERIAUX | Volume horaire | СМ | TD | ТР | ECTS |
|-----------------------------------------------------|----------------|----|----|----|------|
| Stage                                               |                |    |    |    | 30   |
| Stage                                               |                |    |    |    | ;    |

### Formation continue

### A savoir

Niveau II (Licence ou maîtrise universitaire)

Niveau d'entrée :

Niveau de sortie : Niveau I (supérieur à la maîtrise)

### Références et certifications

Codes ROME: H01 - Etudes et supports techniques à l'industrie

### Autres informations (FC)

Ce parcours est éligible à la bourse E-SENSE.

Obtenir plus d'informations: https://www.u-picardie.fr/lupjv/notre-ambition-france-2030/e-sense-tran...

Postuler à la bourse E-SENSE :  $\underline{https://extra.u-picardie.fr/limesurvey/index.php/229231?lang=fr}$ 

### **Contacts Formation Continue**

SFCU

03 22 80 81 39

sfcu@u-picardie.fr

10 rue Frédéric Petit

80048 Amiens Cedex 1

<u>France</u>

Le 17/12/2025